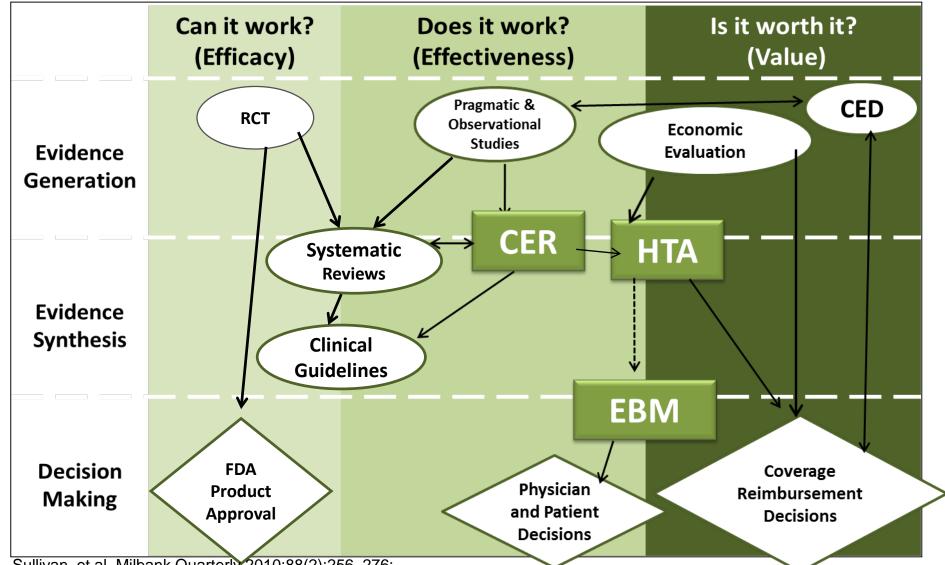
Introduction to Bayesian Network Meta-Analysis

Beth Devine, PhD, PharmD, MBA Ashley Cha, PharmD, MS CLEAR Center July 27, 2020 THE CHOICE INSTITUTE

Outline

> Part 1: Overview of Network Meta-Analysis (NMA)


- Context for Evidence Synthesis
- From meta-analysis (MA) to NMA
- Fundamentals of NMA

> Part 2: Case Study

Microvascular Benefits of New Anti-Diabetic Agents
> NMA of Renal Outcomes

THE CHOICE INSTITUTE

Evidence Synthesis in Comparative effectiveness research (CER); Health technology assessment (HTA)

Adapted from Luce...Sullivan, et al. Milbank Quarterly 2010;88(2):256–276; CED: coverage with evidence development: EBM = evidence-based medicine: RCT = randomized controlled trial

From Meta-Analysis to NMA

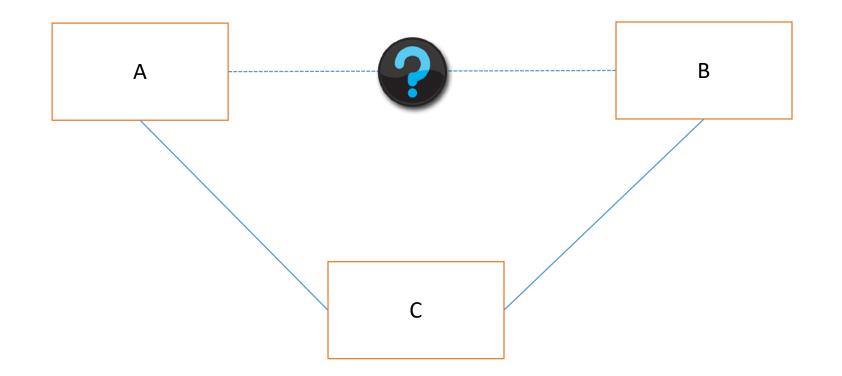
- Recall....
- Meta-analyses are useful for informing evidence-based decision-making — Quantitatively (statistically) pooling results
 - Comparable studies of the <u>same</u> intervention to the <u>same</u> comparator
 - Obtain overall estimate of effect
 - usually OR, RR, HR, or Standardized Mean Difference (SMD)
 - Each study weighted according to size and uncertainty (weighted mean)
 - Fixed effects and random effects models are used

THE CHOICE INSTITUTE

Traditional Meta-analysis

Educational interventions for asthma in children 23-Jun-2011 4.14 ED Visits (mean) Education Control Std. Mean Difference Std. Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV, Random, 95% Cl Year IV, Random, 95% Cl 4.14.1 Group Interventions Lewis 1984 2.32.98 48 3.71 2.98 28 2.9% -0.47 [-0.94, 0.00] 1984 Clark 1986 1.72 4.8% 4.2 159 2.49 6.26 73 -0.16 [-0.43, 0.12] 1986 Toelle 1993 1.51 2.31 63 1.67 2.4 3.8% -0.07 [-0.44, 0.30] 1993 51 Christiansen 1997 0.3 1.2 27 0.2 0.43 15 1.9% 0.10 [-0.53, 0.73] 1997 Ronchetti 1997 0.07 0.32 0.23 0.78 4.9% 114 95 -0.28 [-0.55, -0.00] 1997 Greineder 1999 0.41 0.59 29 0.96 1.48 2.5% 28 -0.48 [-1.01, 0.04] 1999 Tieffenberg 2000 0.37 3.8% 0.3 65 0.7 0.9 52 -0.51 [-0.88, -0.14] 2000 Cicutto 2005 1.7 1.9 132 2.5 2.5 124 5.2% -0.36 [-0.61, -0.11] 2005 La Roche 2006 1.5 1.7 11 1.1 1.8 11 1.2% 0.22 [-0.62, 1.06] 2006 Bryant-Stephens 2009 1.72 2.28 4.8% 118 1.38 1.69 85 0.16[-0.11, 0.44] 2009 Espinoza-Palma 2009 0.83 1.2 36 1.78 3.0% 3 41 -0.40 [-0.85, 0.05] 2009 Indinnimeo 2009 0.8 3.78 1.59 4.0% 60 0.5 63 0.10 [-0.25, 0.46] 2009 Watson 2009 5.8% 0.45 0.96190 0.75 0.96 190 -0.31 [-0.51, -0.11] 2009 Butz 2010 1.16 2.4 100 0.95 2.6 93 4.8% 0.08 [-0.20, 0.37] 2010 Subtotal (95% CI) 1152 949 53.5% -0.18 [-0.31, -0.05] Heterogeneity: Tau² = 0.03; Chi² = 24.55, df = 13 (P = 0.03); I² = 47% Test for overall effect: Z = 2.80 (P = 0.005) 4.14.2 Individual Interventions McNabb 1985 1.9 4.72 7.4 4.72 7 0.7% -1.09 [-2.24, 0.06] 1985 Alexander 1988 0.9 0.6 2.1 10 1.0% -1.09 [-2.02, -0.16] 11 2.4 1988 Hughes 1991 0.45 1.05 44 0.6 1.05 45 3.3% -0.14 [-0.56, 0.27] 1991 2.3% Talabere 1993 0.44 0.77 25 1.08 1.32 25 -0.58 [-1.15, -0.02] 1993 Persaud 1996 0.27 0.57 18 1.2 1.7% -0.76 [-1.44, -0.08] 1996 1 18 Kelly 2000 1.7 1.85 38 2.3 1.9 40 3.1% -0.32 [-0.76, 0.13] 2000 Bartholomew 2000 1.3 1.8 64 1.2 1.7 55 3.9% 0.06 [-0.30, 0.42] 2000 Harish 2001 4.0% 0.101 0.158 60 0.3260.704 69 -0.43 [-0.77, -0.08] 2001 Krishna 2003 0.4 107 121 5.0% -0.59 [-0.85, -0.32] 2003 0.1 0.61.1 Butz 2006 27 28.4 46.5 86 4.6% -0.34 [-0.63, -0.05] 2006 95 40 Joseph 2007 5.1% 0.5 2 134 0.8 1.9 107 -0.15 [-0.41, 0.10] 2007 Garbutt 2010 0.52 0.92 154 0.48 0.77 150 5.5% 0.05 [-0.18, 0.27] 2010 Subtotal (95% Cl) 757 733 40.3% -0.32 [-0.50, -0.14] Heterogeneity: Tau² = 0.05; Chi² = 26.56, df = 11 (P = 0.005); l² = 59% Test for overall effect: Z = 3.57 (P = 0.0004) 4.14.3 Individual and Group Interventions Fireman 1981 0.08 1.14 13 1.14 13 1.3% -0.78 [-1.58, 0.02] 1981 Shields 1990 0.54 1.68 101 0.38 1.68 104 4.9% 0.09 [-0.18, 0.37] 1990 Subtotal (95% Cl) 114 117 6.2% -0.26 [-1.10, 0.58] Heterogeneity: Tau² = 0.29; Chi² = 4.10, df = 1 (P = 0.04); l² = 76% Test for overall effect: Z = 0.60 (P = 0.55) Total (95% CI) 2023 1799 100.0% -0.23 [-0.33, -0.13] Heterogeneity: Tau² = 0.04; Chi² = 58.96, df = 27 (P = 0.0004); I² = 54% -2 -1 Test for overall effect; Z = 4.37 (P < 0.0001) Favours education Favours control Test for subgroup differences: Chi² = 1.57, df = 2 (P = 0.46), l² = 0%

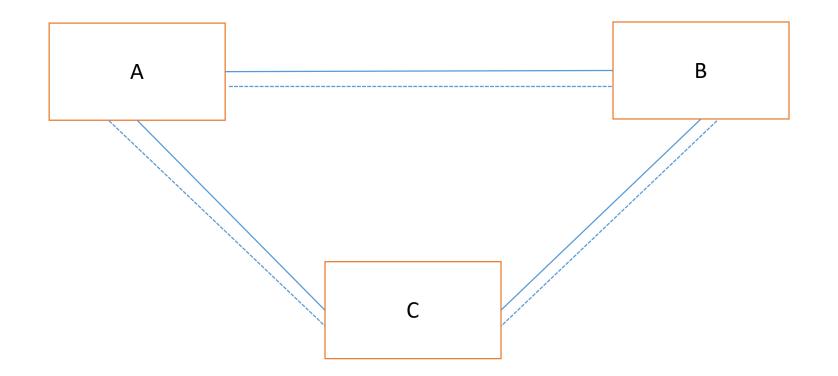
Agapova, Devine, Nguyen, Wolf, Inoue *J. Comp. Eff. Res.* 2014;3(4), 345–357


Introduction to Network MA Methods (1)

- > But now...
- > Network of studies involves > 2 drugs
 - Drug A to C (study_{AC})
 - Drug B to C (study_{BC})
- > We wish to know how Drug A compared to Drug B can make an <u>indirect</u> <u>comparison</u>

 $study_{AB} = study_{AC} - study_{BC}$

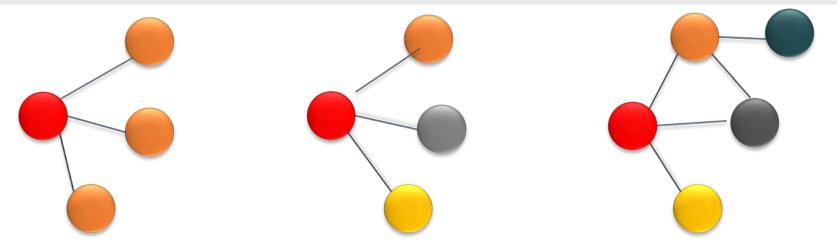
THE CHOICE INSTITUTE


Introduction to Network MA Methods (2)

"Indirect Treatment Comparison (ITC)"

Statistical comparison of two or more agents that have not been directly compared to each other, but that have one comparator in common, thus creating a network

Introduction to Network MA Methods (3)



"Mixed treatment comparison (MTC)" Extension of ITC where both direct and indirect evidence is included

Introduction to Network MA Methods (4)

Network Meta-Analysis

Meta-analysis	Indirect Treatment Comparison	Mixed Treatment Comparison
Quantitatively combined results of <u>comparable</u> studies of the <u>same agent</u> to obtain overall estimate of effect.	Statistical comparison of two or more agents that have <u>not been directly</u> <u>compared to each other</u> , but that have <u>one</u> <u>comparator in common</u> , thus creating a network	Extension of ITC where <u>both direct and indirect</u> evidence is included

Jansen. Value in Health 2008;11(5):956-64; 21:2313-24; Lu & Ades. Stat Med 2004;23:3105-24; Sutton & Ades. Pharmacoeconomics 2008;26(9);753-67

First, must conduct all systematic review steps

- > Establish **PICOTS** criteria
 - <u>P</u>opulation, <u>Interventions</u>, <u>C</u>omparator(s), <u>O</u>utcomes, <u>T</u>iming (timing of literature search, duration of treatment, duration of follow-up), <u>S</u>etting/<u>S</u>tudy design
- > Conduct search using multiple databases
- > Dual review & reconciliation of titles, abstracts, full-text of included studies
- > Conduct quality assessment on each included study using a risk of bias tool (dual review again)
- > Extract data into evidence tables
- > Address heterogeneity in protocol/analysis pool at all? Subgroups? Meta-regression?

THE CHOICE INSTITUTE

Fundamentals of NMA (1) – Preserve randomization

- > Validity of evidence synthesis relies on methods that appreciate within trial randomization
- > If within trial randomization not preserved then NMA has a fatal flaw
- > A limitation inherent in the method is risk of bias due to lack of randomization across trials

THE CHOICE INSTITUTE

School of Pharmacy

Fundamentals of NMA (2) - Heterogeneity

- Also recall...
 - in meta-analysis, heterogeneity of included studies must be taken into account
 - if assumption not met.....then conduct systematic review
- Similarity
 - qualitative assessment
 - compare studies on PICOTS criteria & study design
 - "P" = demographic and clinical characteristics
- Heterogeneity
 - quantitative assessment
 - percent of variation across studies due to heterogeneity, rather than chance
 - evaluate with I² statistic
 - primary goal of meta-analysis is to explore heterogeneity, rather than to calculate one effect

THE CHOICE INSTITUTE

School of Pharmacy

Fundamentals of NMA (3) – Two additional assumptions

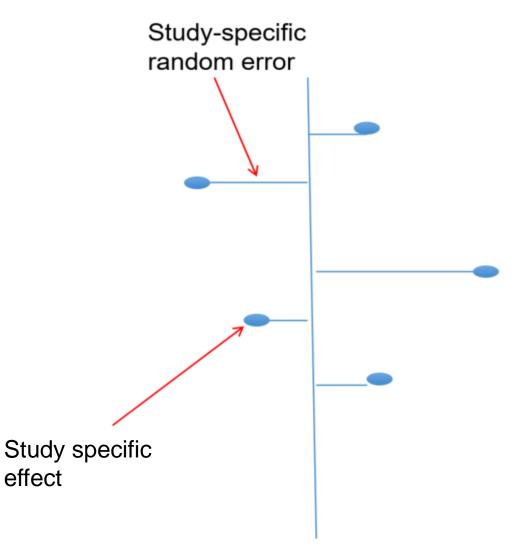
> Transitivity

- Validity of logical inference; potential modifiers of treatment effect similarly distributed across trials
- If A=B, and B=C, then A=C
- Qualitative assessment

> Consistency

- If direct and indirect evidence, then quantitatively check consistency
- If inconsistency.....then non-transitivity
- Quantitative (statistical) measure of transitivity
- If inconsistent, include a "Design by Treatment" interaction term in meta-regression model

THE CHOICE INSTITUTE

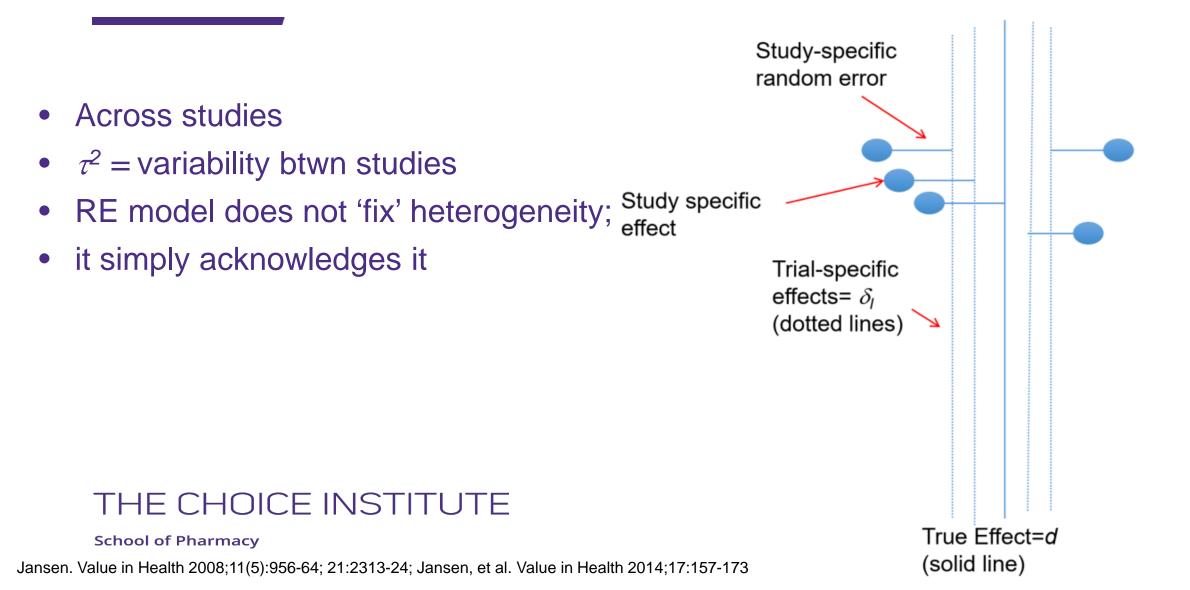

School of Pharmacy

Jansen. Value in Health 2008;11(5):956-64; 21:2313-24; Jansen, et al. Value in Health 2014;17:157-173; Neupane. NMA using R: Review of currently available automated packages. PLoS One. 2014;9(12):e115065

Fundamentals of NMA (4): Fixed Effects (FE) Model

- No heterogeneity
- We estimate the common true effect

THE CHOICE INSTITUTE



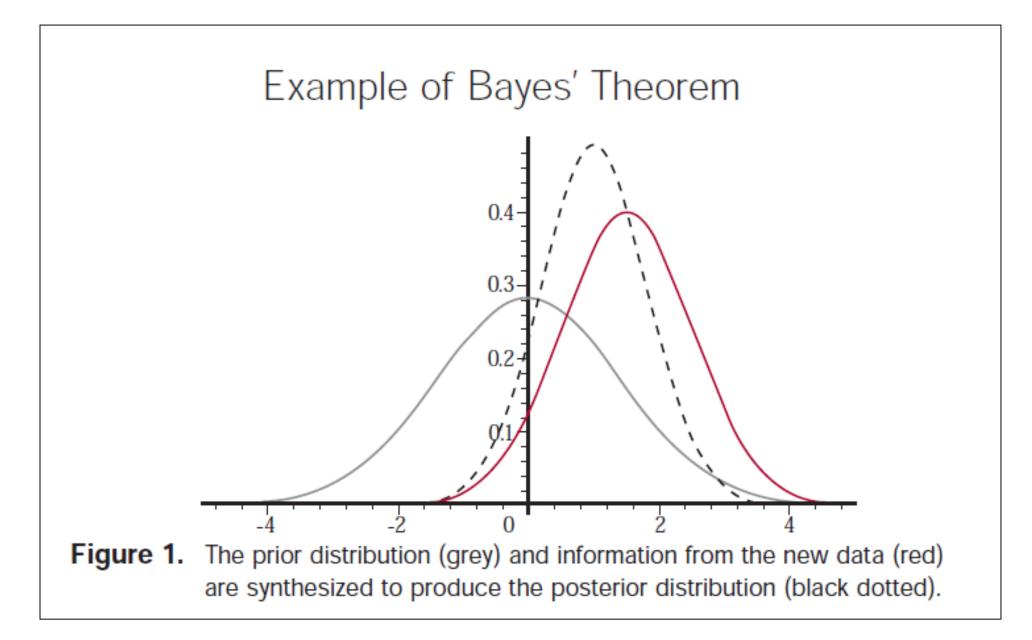
School of Pharmacy

Jansen. Value in Health 2008;11(5):956-64; 21:2313-24; Jansen, et al. Value in Health 2014;17:157-1

True effect=d

Fundamentals of NMA (5): Random Effects (RE) Model

Bayesian Framework for Analysis

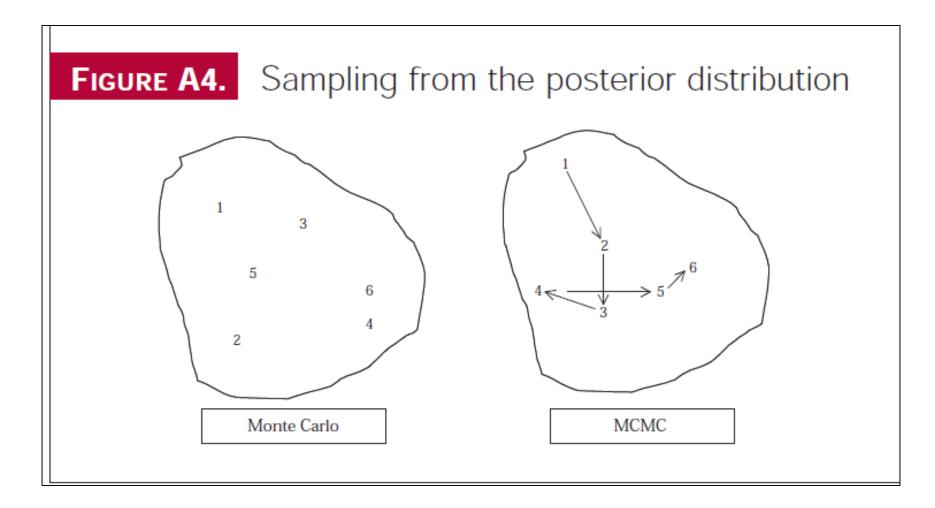

- > Start with what you know (prior information)
- > Combine with what you observe (likelihood function)
- > This gives you what you know after observing the data (posterior information)

likelihoodpriorPr(B|A) = $\frac{Pr(A|B) \times Pr(B)}{Pr(A) \text{ scaling term}}$

THE CHOICE INSTITUTE

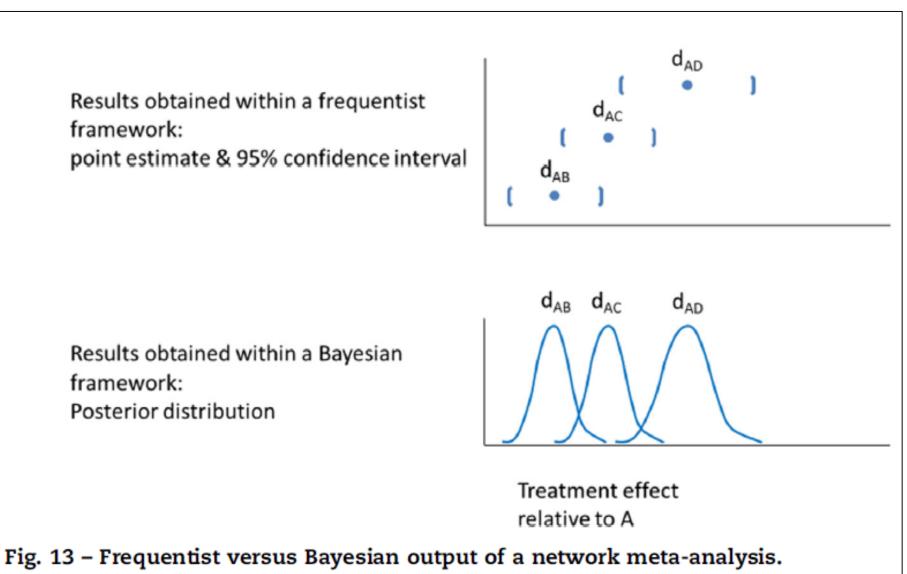
School of Pharmacy

O'Hagan & Luce. A Primer on Bayesian Statistics. Center for Bayesian Statistics in Health Economics. MEDTAP International, 2003


Bayesian Computational Methods (1) – Monte Carlo Simulation

- > Estimates random sequence of chains, where
 - next chain relies only on its immediate predecessor Markov chain
- > Markov chain Monte Carlo simulation (MCMC)
 - set up a Markov chain whose distribution is the posterior distribution
- > Chain must run to convergence before estimating posterior probabilities <u>burn ins</u>
- > A special type of algorithm cycles through each model parameter one at a time is called <u>Gibbs sampling</u>

THE CHOICE INSTITUTE


School of Pharmacy

Bayesian Computational Methods (2)– Monte Carlo Simulation

O'Hagan & Luce. A Primer on Bayesian Statistics. Center for Bayesian Statistics in Health Economics. MEDTAP International, 2003

Frequentist vs. Bayesian Results of NMA

Criticisms of Bayesian Approach (of NMA)

- > Priors are subjective (differ between persons)
- > Priors difficult to specify
 - An area of active research
- > No single measure of "statistical significance "
 - No p-value
- > Computationally more challenging
 - Computers have largely solved the problem
- > Programming more challenging
 - New packages emerging

THE CHOICE INSTITUTE

School of Pharmacy

Advantages of Bayesian Approach (of NMA)

- > Inferences mean what you thought frequentist inferences meant!
- > Exact sample size results (no asymptotics)
- > Can incorporate prior knowledge
- > More natural in context of decision-making
 - Can calculate probability of effect of each technology
 - Can rank order technologies

THE CHOICE INSTITUTE

School of Pharmacy

Evolving Methods

Research Synthesis Methods

- > Use of individual patient data (IPD)
- > Use of partial IPD and partial aggregate data
 - Matching adjusted indirect treatment comparisons
 - > Signorovitch, et al. Comparative effectiveness without head-to-head trials. Pharmacoeconomics 2010;28:935-945
 - > Signorovitch, et al. Matching-adjusted indirect comparisons: a new tool for timely CER. Value Health 2012;15:940-947
 - Simulated treatment comparisons
 - > Caro & Ishak. No head-to-head trial? Simulate the missing arms. Pharmacoeconomics 2010;28:957-967
 - > Ishak, et al. Simulation and matching-based approaches for indirect comparison of treatments. Pharmacoeconomics 2015;33:537-549

THE CHOICE INSTITUTE

School of Pharmacy

References

- > Jansen, et al. Indirect treatment comparison/network meta-analysis study questionnaire to assess relevance and credibility to inform heath care decision making: An ISPOR-AMCP-NPC Good Practice Task Force Report. Value Health 2014;17:157-73
- > Jansen, et al. Interpreting indirect treatment comparisons and network meta-analysis for health-care decision making: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 1. Value Health 2011;14:417-428
- > Hoaglin, et al. Conducting indirect-treatment comparison and network meta-analysis studies: Report of the ISPOR Task Force on Indirect Treatment Comparisons Good Research Practices: Part 1. Value Health 2011;14:429-437
- > Higgins, et al. Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synthesis Methods 2012;3:98-110
- > White, et al. Consistency and inconsistency in network meta-analysis: model estimation using multivariate metaregression. Res Synthesis Methods 2012;3:111-125
- > Brown, et al. A Microsoft-Excel-based tool for running and critically appraising network meta-analyses An overview and application of NetMetaXL. Systematic Reviews 2014;3:110
- > Chaimani, et al. Graphical tools for network meta-analysis in STATA. PLOS One 2013;8(10): e76654
- > Canestaro, Forrester, Devine, et al. Drug treatment of idiopathic pulmonary fibrosis. CHEST 2016;149(3):156-66

THE CHOICE INSTITUTE

Thank you! Questions? bdevine@uw.edu